zzz19760225
超级版主
积分 3673
发帖 2020
注册 2016-2-1
状态 离线
|
『第
76 楼』:
PMON
PMON详解 :专注嵌入式dustLiYang
http://blog.csdn.net/sdustliyang/article/details/7295803
http://xenyinzen.wikidot.com/loongson-about
+++++++++++++++++++++++++++++++++++++++++
PMON-V1.1 目录结构
+++++++++++++++++++++++++++++++++++++++++
pmon的目录结构大致如下(由linux工具tree生成)
.
|-- Targets 目标结构相关代码,每个新结构在该目录下有一个子目录
| `-- Bonito Bonito是我们的北桥代号,里面是一些关于北桥的代码
| |-- Bonito
| |-- compile
| | `-- zboot
| | |-- images
| | |-- pmon
| | `-- utils
| |-- conf
| |-- dev
| |-- include
| `-- pci
|-- conf 源代码编译所依赖的配置文件所在目录
|-- doc 说明文档
|-- examples 一看就知道是样例,但我还不知道只面究竟写的是什么
|-- fb 在frambuffer上做文字和图形显示的代码
|-- include 系统头文件
|-- lib
| |-- libc C库
| `-- libz zip压缩库
|-- pic 开机启动图片(压缩后的)存放目录
|-- pmon pmon主体代码
| |-- arch 平台相关代码
| | `-- mips 处理器相关的代码,比如Flush_Cache等
| |-- cmds pmon shell 命令代码
| |-- common 各模块共同依赖的代码
| |-- custom ??这个目录不知道干什么用的
| |-- dev 一些基本设备的驱动,比如Flash
| |-- fs 文件系统支持代码
| |-- loaders 二进制文件加载器代码
| `-- netio 网络命令以及tftp的实现
|-- sys pmon的较低层的代码
| |-- arch 处理器相关代码一些定义
| | `-- mips
| | `-- include
| |-- dev 各种设备的驱动程序
| | |-- ata
| | |-- fd
| | |-- ic
| | |-- microcode
| | | `-- siop
| | |-- mii
| | |-- pci
| | `-- usb
| |-- kern 主要是一些系统调用的实现,比如malloc,time, signal, socket
| |-- linux
| |-- net 实现网络协议
| |-- netinet 实现网络协议
| |-- scsi Scsi协议的实现
| |-- sys 这个大目录的头文件存放区
| `-- vm ??虚拟内存相关实现
|-- tools 一些工具
| |-- bmp_logo 把bmp图转换成C数据的工具
| |-- bootelf
| |-- mk
| |-- pmoncfg 源代码配置工具
| |-- scripts
| `-- srecord
|-- x86emu x86显卡模拟器,主要是运行显卡的BIOS,初始化显卡
| `-- int10
| `-- x86emu
| |-- include
| | `-- x86emu
| `-- src
| `-- x86emu
| `-- x86emu
`-- zloader zip格式加载启动代码
Targets目录的组成
每个结构一个目录,我们拿Bonito来为例子,主要有下列文件:
start.S 位于Targets/Bonito/Bonito 目录下,是C环境建立之前的汇编代码,使整个BIOS运行的起点。
tgt_machdep.c位于Targets/Bonito/Bonito 目录下,一些板子相关的函数。
pci_machdep.c进行Targets/Bonito/pci 空间分配的一些函数
Targets/Bonito/dev 目录下一些板子特殊的设备的驱动。
Targets/Bonito/conf 目录下是一些编译环境建立需要的一些文件
参考说明
本文的撰写过程中,参考了诸多中科龙梦科技有限公司的内部资料(都是可以公开的),另外还有一些未署名的文档,无法一一列举,在此表示感谢。龙芯事业一定会在前仆后继的勇士所铺设的道路上日益壮大!
+++++++++++++++++++++++++++++++++++++++++
代码执行流程
+++++++++++++++++++++++++++++++++++++++++
当整个板子起电后,CPU将从 0xBFC00000 取指令开始执行,而ROM在系统中的地址就是从该地址开始的。所以,其中的第一条指令就是整个过程中 CPU 要执行的第一个指令。
初始化CPU内的寄存器,清TLB.
初始化一些北桥的基本配置,以确保uart能够正常工作.
初始化uart,主要是设置波特率.
初始化内存(主要通过I2C协议从内存的EEPROM读取内存参数来进行设置).
初始化cache.
拷贝pmon的代码到内存,然后通过
la v0, initmips
jalr v0
nop
从此代码便到内存中间去了,从这开始因为可以读写内存,所以有了栈,故可以用C的代码了,所以以后的程序便是C代码了
+++++++++++++++++++++++++++++++++++++++++
start.S详解
+++++++++++++++++++++++++++++++++++++++++
1
start.S文件在 /Targets/Bonito/Bonito 目录当中,是整个PMON代码的起点。我们首先研究它。
文件一开头是版权声明部分,然后是包括一些头文件,然后是一些宏定义,然后才是代码。
与CPU相关的一些宏定义有
/*
* Register usage:
*
* s0 link versus load offset, used to relocate absolute adresses.
* s1 free
* s2 memory size.
* s3 free.
* s4 Bonito base address.
* s5 dbg.
* s6 sdCfg.
* s7 rasave.
* s8 L3 Cache size.
*/
#define tmpsize s1
#define msize s2
#define bonito s4
#define dbg s5
#define sdCfg s6
下面是程序的开头,不过并不生成实际的二进制数据,它告诉编译汇编器一些信息。
.set noreorder
.globl _start
.globl start
.globl __main
_start:
start:
.globl stack
stack = start - 0x4000 /* Place PMON stack below PMON start in RAM */
=====================
解释:
.set noreorder
是告诉汇编汇编器不要对后面的代码进行优化处理,比如重新排列执行代码。
.globl _start
.globl start
.globl __main
这里,定义了三个全局符号。可以PMON代码中的任何地方引用它。
_start:
start:
.globl stack
stack = start - 0x4000 /* Place PMON stack below PMON start in RAM */
在这里定义了子程序的名称 _start 和 start。并定义了堆栈的栈底 stack 值,在 start 以下 16K 处。
=====================
下面是程序执行的第一条语句
/* NOTE!! Not more that 16 instructions here!!! Right now it's FULL! */
mtc0 zero, COP_0_STATUS_REG
mtc0 zero, COP_0_CAUSE_REG
li t0, SR_BOOT_EXC_VEC /* Exception to Boostrap Location */
mtc0 t0, COP_0_STATUS_REG
/* SR's BEV bit is set so the CPU uses the ROM(kseg1) space exception entry point when reboot exception occurs
la sp, stack
la gp, _gp
=====================
解释:
由于龙芯的地址空间决定,这里的代码不能超过 16 条指令,因为后面紧跟着的是中断向量的地址。(??)
接着,就把 CP0 的状态寄存器 COP_0_STATUS_REG 和 COP_0_CAUSE_REG 寄存器全部清空为0。
li t0, SR_BOOT_EXC_VEC
接着设置状态寄存器的BEV位,这样就是让 CP0 运行在没有 TLB 的模式,并且一旦发生异常,就进入ROM 的 bfc00000 位置重启。
后面两句主要设置引导程序的堆栈空间,
la sp, stack 是把栈底地址给 sp 寄存器,(现在有个疑问就是 pmon的栈是往上还是往下生长的??)
la gp, _gp 是把编译器中的 _gp 全局地址给 gp 寄存器,这样做法是让全局变量可以作相对寄存器寻址。
其中_gp是在连接脚本文件里定义的。
=====================
bal uncached
nop
bal locate
nop
uncached:
or ra, UNCACHED_MEMORY_ADDR
j ra
nop
=====================
解释:
这段程序先进行一个无条件跳转连接指令,这样做的目的很明确就是想清空预取指令和流水线的指令。
这样就跳到 uncached 这里运行。
先来看看bal指令会做些什么事情,
通常bal指令会算出跳转到的目的地址相对于PC寄存器的偏移量,
然后把PC+8指令地址放到ra寄存器里,也就是把bal locate指令地址放到RA寄存器,以便可以返回。
由于龙芯2E的加电时启动地址是 0xBFC0 0000,那么放在ra里的值就是 0xBFCO 0028(第8条指令)。
后面
or ra, UNCACHED_MEMORY_ADDR,这里进行是与0xA000 00000的或运算,
也就是说从ROM加载时,不会改变返回地址 ra 的值。
写这句的目的主要是保证要从ROM中运行后面的一段程序,而不是从其它地址(RAM中)运行。
所以接着就跳回来到 bal locate位置并执行 bal locate 指令,这样就跳到 locate 的位置执行程序了。
=====================
在MIPS中,异常处理入口有两套,通过 CP0 的 STATUS 寄存器位 BEV 来决定,当 BEV=1 时,异常的入口地址为 0xBFC00000 开始的地址。而 BEV=0,异常地址为 0x80000000 开始的地址,所以PMON程序段开始处是一些异常的调入口,需要跳过这段空间,程序就是通过这个 bal 指令跳到后面的
2
下面是那段被跳过去的异常代码
/*
* Reboot vector usable from outside pmon.
*/
/* started in aligned address by 2^8=256 Bytes, that is 0xbfc00000 + 0x100 = 0xbfc00100 */
.align 8
ext_map_and_reboot:
bal CPU_TLBClear
nop
li a0, 0xc0000000
li a1, 0x40000000
bal CPU_TLBInit
nop
la v0, tgt_reboot
la v1, start
subu v0, v1
lui v1, 0xffc0
addu v0, v1
jr v0
nop
/*
* Exception vectors here for rom, before we are up and running. Catch
* whatever comes up before we have a fully fledged exception handler.
*/
/* TLB refill exception */
/* bfc00200, this code address is 0xbfc00200, 2^9 = 512 Bytes, it is a exception process function */
.align 9
move k0, ra /* save ra */
la a0, v200_msg
bal stringserial
nop
b exc_common
.align 7 /* bfc00280 */
move k0, ra #save ra
la a0, v280_msg
bal stringserial
nop
b exc_common // print the CP0 register's infomation
/* Cache error handler */
.align 8 /* bfc00300 */
PRINTSTR("\r\nPANIC! Unexpected Cache Error exception! ")
mfc0 a0, COP_0_CACHE_ERR
bal hexserial
nop
b exc_common
/* General exception handler */
.align 7 /* bfc00380 */
move k0, ra #save ra
la a0, v380_msg
bal stringserial
nop
b exc_common
.align 8 /* bfc00400 */
move k0, ra #save ra
la a0, v400_msg
bal stringserial
nop
/* when the exception occurs, do this code to present the CP0 register's content */
exc_common:
PRINTSTR("\r\nCAUSE=")
mfc0 a0, COP_0_CAUSE_REG
bal hexserial
nop
PRINTSTR("\r\nSTATUS=")
mfc0 a0, COP_0_STATUS_REG
bal hexserial
nop
PRINTSTR("\r\nERRORPC=")
mfc0 a0, COP_0_ERROR_PC
bal hexserial
nop
PRINTSTR("\r\nEPC=")
mfc0 a0, COP_0_EXC_PC
bal hexserial
nop
PRINTSTR("\r\nBADVADDR=")
mfc0 a0, COP_0_BAD_VADDR
bal hexserial
nop
PRINTSTR("\r\nRA=")
move a0, k0
bal hexserial
nop
// b ext_map_and_reboot
nop
/* control the distribution of the code, here we insert a bank 256 Bytes. */
.align 8
nop
/* handler name table */
.align 8
.word read
.word write
.word open
.word close
.word nullfunction
.word printf
.word vsprintf
.word nullfunction
.word nullfunction
.word getenv
.word nullfunction
.word nullfunction
.word nullfunction
.word nullfunction
3
让我们看看 locate 标号之后的代码是些什么
/*
* We get here from executing a bal to get the PC value of the current execute
* location into ra. Check to see if we run from ROM or if this is ramloaded.
*/
locate:
la s0, start
subu s0, ra, s0
and s0, 0xffff0000
li t0, SR_BOOT_EXC_VEC
mtc0 t0, COP_0_STATUS_REG
mtc0 zero, COP_0_CAUSE_REG
.set noreorder
/* the varible bonito is register s4, BONITO_REG_BASE is 0x1fe00000 */
li bonito, PHYS_TO_UNCACHED(BONITO_REG_BASE)
bal 1f
nop /* now the value of ra is 0xbfc00xxx */
/* bonito endianess */
BONITO_BIC(BONITO_BONPONCFG, BONITO_BONPONCFG_CPUBIGEND)
BONITO_BIC(BONITO_BONGENCFG, BONITO_BONGENCFG_BYTESWAP|BONITO_BONGENCFG_MSTRBYTESWAP)
BONITO_BIS(BONITO_BONPONCFG, BONITO_BONPONCFG_IS_ARBITER)
/*
* In certain situations it is possible for the Bonito ASIC
* to come up with the PCI registers uninitialised, so do them here
*/
BONITO_INIT(BONITO_PCICLASS,(PCI_CLASS_BRIDGE << PCI_CLASS_SHIFT) | (PCI_SUBCLASS_BRIDGE_HOST << PCI_SUBCLASS_SHIFT))
BONITO_INIT(BONITO_PCICMD, BONITO_PCICMD_PERR_CLR | BONITO_PCICMD_SERR_CLR | BONITO_PCICMD_MABORT_CLR | BONITO_PCICMD_MTABORT_CLR | BONITO_PCICMD_TABORT_CLR | BONITO_PCICMD_MPERR_CLR )
//BONITO_INIT(BONITO_PCILTIMER, 0)
BONITO_INIT(BONITO_PCILTIMER, 255)
BONITO_INIT(BONITO_PCIBASE0, 0)
BONITO_INIT(BONITO_PCIBASE1, 0)
BONITO_INIT(BONITO_PCIBASE2, 0)
BONITO_INIT(BONITO_PCIEXPRBASE, 0)
BONITO_INIT(BONITO_PCIINT, 0)
BONITO_BIS(BONITO_PCICMD, BONITO_PCICMD_PERRRESPEN)
BONITO_BIS(BONITO_PCICMD, PCI_COMMAND_IO_ENABLE|PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_MASTER_ENABLE)
BONITO_BIC(BONITO_BONGENCFG, 0x80) #???1iobc
#BONITO_BIS(BONITO_BONGENCFG, BONITO_BONGENCFG_BUSERREN)
/* Set debug mode */
BONITO_BIS(BONITO_BONGENCFG, BONITO_BONGENCFG_DEBUGMODE)
/******** added to init southbridge*/
#ifdef VGA_NOTEBOOK_V2
ISA_BRMW_INIT(0,0x74,0xeb,0x0)
ISA_BRMW_INIT(0,0x75,0xff,0x20)
ISABWWR_INIT(4,0x48,0xb000)
ISABBWR_INIT(4,0x41,0x80)
RMW_INIT(MOD_W,(PCI_IO_SPACE+0xb04c),0xffffffdf,0x0)
#endif
// SouthBridge settings
/* Set the SMB base address */
ISABWWR_INIT(4, SMBUS_IO_BASE_ADDR, SMBUS_IO_BASE_VALUE | 0x1)
/* enable the host controller */
ISABHWR_INIT(4, SMBUS_HOST_CONFIG_ADDR, SMBUS_HOST_CONFIG_ENABLE_BIT)
/* enable the SMB IO ports */
ISABBWR_INIT(4, PCI_COMMAND_STATUS_REG, PCI_COMMAND_IO_ENABLE)
ISARD_INIT(CTC_PORT+PT_CONTROL)
/* program i8254 ISA refresh counter */
ISAWR_INIT(CTC_PORT+PT_CONTROL,PTCW_SC(PT_REFRESH)|PTCW_16B|PTCW_MODE(MODE_RG))
ISAWR_INIT(CTC_PORT+PT_REFRESH, ISAREFRESH & 0xff)
ISAWR_INIT(CTC_PORT+PT_REFRESH, ISAREFRESH >> 8)
EXIT_INIT(0)
1:
move a0, ra /* now the value of ra is 0xbfc00xxx */
reginit:
lw t3, Init_Op(a0)
lw t0, Init_A0(a0) /* Init_A0 is 4 */
and t4, t3, OP_MASK /* OP_MASK is 0x000000fc, to keep 4 bytes aligned */
/*
* EXIT(STATUS)
*/
bne t4, OP_EXIT, 8f /* OP_EXIT is 0x00000000 */
nop
move v0, t0 /* now v0 is the content of 4 bytes offset from 0xbfc000xx */
b .done
nop
/*
* DELAY(CYCLES)
*/
8: bne t4, OP_DELAY, 8f /* OP_DELAY is 0x00000008 */
nop
1: bnez t0,1b /* t0 不等于 0就在这死循环 */
subu t0,1
b .next
nop
/*
* READ(ADDR)
*/
8: bne t4, OP_RD, 8f /* OP_RD is 0x00000010 */
nop
and t4, t3, MOD_MASK /* MOD_MASK is 0x00000003 */
bne t4, MOD_B, 1f /* MOD_B is 0x00000000 ??? why not 0x01 or 0x03 */
nop
lbu t5, 0(t0)
b .next
nop
1: bne t4, MOD_H, 1f /* MOD_H is 0x00000001 ??? why not 0x02 */
nop
lhu t5, 0(t0)
b .next
nop
1: bne t4, MOD_W, 1f /* MOD_H is 0x00000002 ??? why not 0x00 */
nop
#if __mips64
lwu t5, 0(t0)
#else
lw t5, 0(t0)
#endif
b .next
nop
1:
#if __mips64
lw t5,0(t0)
b .next
nop
#else
b .fatal
nop
#endif
/*
* WRITE(ADDR,VAL)
*/
8: bne t4, OP_WR, 8f /* OP_WR is 0x00000014 */
nop
lw t1, Init_A1(a0) /* Init_A1 is 8 */
and t4, t3, MOD_MASK /* MOD_MASK is 0x00000003 */
bne t4, MOD_B, 1f
nop
sb t1, 0(t0)
b .next
nop
1: bne t4,MOD_H,1f
nop
sh t1,0(t0)
b .next
nop
1: bne t4,MOD_W,1f
nop
sw t1,0(t0)
b .next
nop
1:
#if __mips64
sd t1,0(t0)
b .next
nop
#else
b .fatal
nop
#endif
/*
* RMW(ADDR,AND,OR)
*/
8: bne t4,OP_RMW,8f
nop
lw t1,Init_A1(a0)
lw t2,Init_A2(a0)
and t4,t3,MOD_MASK
bne t4,MOD_B,1f
nop
lbu t4,0(t0)
and t4,t1
or t4,t2
sb t4,0(t0)
b .next
nop
1: bne t4,MOD_H,1f
nop
lhu t4,0(t0)
and t4,t1
or t4,t2
sh t4,0(t0)
b .next
nop
1: bne t4,MOD_W,1f
nop
lw t4,0(t0)
and t4,t1
or t4,t2
sw t4,0(t0)
b .next
nop
1:
#if __mips64
ld t4,0(t0)
and t4,t1
or t4,t2
sd t4,0(t0)
b .next
nop
#else
b .fatal
nop
#endif
/*
* WAIT(ADDR,MASK,VAL)
*/
8: bne t4,OP_WAIT,8f
nop
lw t1,Init_A1(a0)
lw t2,Init_A2(a0)
and t4,t3,MOD_MASK
bne t4,MOD_B,1f
nop
3: lbu t4,0(t0)
and t4,t1
bne t4,t2,3b
nop
b .next
nop
1: bne t4,MOD_H,1f
nop
3: lhu t4,0(t0)
and t4,t1
bne t4,t2,3b
nop
b .next
nop
1: bne t4,MOD_W,1f
nop
3: lw t4,0(t0)
and t4,t1
bne t4,t2,3b
nop
b .next
nop
1:
#if __mips64
3: ld t4,0(t0)
and t4,t1
bne t4,t2,3b
nop
b .next
nop
#else
b .fatal
nop
#endif
.next:
addu a0, Init_Size /* Init_Size is 16 */
b reginit /* a big repeatation */
nop
8:
.fatal:
b .done
nop
bal stuck /* these two sentences seem been ignored */
nop
=====================
解释:
locate:
la s0, start
subu s0, ra, s0
and s0, 0xffff0000
此时,ra 中的地址值是前面 uncached 标号的地址,第二句作用是计算前面跳转时已运行过的代码的长度,最后一句把零头截掉。
这段代码是为了访问数据,因为这段汇编在Rom执行,而编译出来的数据段在 0x8002xxxx,
为了能够访问数据段的数据,需要进行一个地址的修正,s0 正是起到这种修正的目的。
li t0, SR_BOOT_EXC_VEC
mtc0 t0, COP_0_STATUS_REG
mtc0 zero, COP_0_CAUSE_REG
为保险起见,再清理一遍配置寄存器
.set noreorder
/* the varible bonito is register s4, BONITO_REG_BASE is 0x1fe00000 */
li bonito, PHYS_TO_UNCACHED(BONITO_REG_BASE)
bal 1f
nop /* now the value of ra is 0xbfc00xxx */
将 BONITO_REG_BASE 的物理地址值保存到 s4 寄存器
(通过映射到未经缓存的地址空间里,龙芯 CPU 访问外部空间,只能用映射后的地址),
然后跳转到后面1标号处执行。
1: move a0, ra /* now the value of ra is 0xbfc00xxx */
reginit: /* local name */
lw t3, Init_Op(a0)
lw t0, Init_A0(a0) // Init_A0 is 4
and t4, t3, OP_MASK // OP_MASK is 0x000000fc, to keep 4 bytes aligned
在1标号的地方,取跳转时压入的RA寄存器的值,然后通过寄存器相对寻址的方式,取得跳转指令后面保存的参数,并保存到t3, t0寄存器。
上句说的就是这些参数
/* bonito endianess */
BONITO_BIC(BONITO_BONPONCFG, BONITO_BONPONCFG_CPUBIGEND)
BONITO_BIC(BONITO_BONGENCFG, BONITO_BONGENCFG_BYTESWAP|BONITO_BONGENCFG_MSTRBYTESWAP)
BONITO_BIS(BONITO_BONPONCFG, BONITO_BONPONCFG_IS_ARBITER)
/*
* In certain situations it is possible for the Bonito ASIC
* to come up with the PCI registers uninitialised, so do them here
*/
BONITO_INIT(BONITO_PCICLASS,(PCI_CLASS_BRIDGE << PCI_CLASS_SHIFT) | (PCI_SUBCLASS_BRIDGE_HOST << PCI_SUBCLASS_SHIFT))
BONITO_INIT(BONITO_PCICMD, BONITO_PCICMD_PERR_CLR | BONITO_PCICMD_SERR_CLR | BONITO_PCICMD_MABORT_CLR | BONITO_PCICMD_MTABORT_CLR | BONITO_PCICMD_TABORT_CLR | BONITO_PCICMD_MPERR_CLR )
//BONITO_INIT(BONITO_PCILTIMER, 0)
BONITO_INIT(BONITO_PCILTIMER, 255)
BONITO_INIT(BONITO_PCIBASE0, 0)
BONITO_INIT(BONITO_PCIBASE1, 0)
BONITO_INIT(BONITO_PCIBASE2, 0)
BONITO_INIT(BONITO_PCIEXPRBASE, 0)
BONITO_INIT(BONITO_PCIINT, 0)
BONITO_BIS(BONITO_PCICMD, BONITO_PCICMD_PERRRESPEN)
BONITO_BIS(BONITO_PCICMD, PCI_COMMAND_IO_ENABLE|PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_MASTER_ENABLE)
BONITO_BIC(BONITO_BONGENCFG, 0x80) #???1iobc
#BONITO_BIS(BONITO_BONGENCFG, BONITO_BONGENCFG_BUSERREN)
/* Set debug mode */
BONITO_BIS(BONITO_BONGENCFG, BONITO_BONGENCFG_DEBUGMODE)
/******** added to init southbridge*/
#ifdef VGA_NOTEBOOK_V2
ISA_BRMW_INIT(0,0x74,0xeb,0x0)
ISA_BRMW_INIT(0,0x75,0xff,0x20)
ISABWWR_INIT(4,0x48,0xb000)
ISABBWR_INIT(4,0x41,0x80)
RMW_INIT(MOD_W,(PCI_IO_SPACE+0xb04c),0xffffffdf,0x0)
#endif
// SouthBridge settings
/* Set the SMB base address */
ISABWWR_INIT(4, SMBUS_IO_BASE_ADDR, SMBUS_IO_BASE_VALUE | 0x1)
/* enable the host controller */
ISABHWR_INIT(4, SMBUS_HOST_CONFIG_ADDR, SMBUS_HOST_CONFIG_ENABLE_BIT)
/* enable the SMB IO ports */
ISABBWR_INIT(4, PCI_COMMAND_STATUS_REG, PCI_COMMAND_IO_ENABLE)
ISARD_INIT(CTC_PORT+PT_CONTROL)
/* program i8254 ISA refresh counter */
ISAWR_INIT(CTC_PORT+PT_CONTROL,PTCW_SC(PT_REFRESH)|PTCW_16B|PTCW_MODE(MODE_RG))
ISAWR_INIT(CTC_PORT+PT_REFRESH, ISAREFRESH & 0xff)
ISAWR_INIT(CTC_PORT+PT_REFRESH, ISAREFRESH >> 8)
EXIT_INIT(0)
这些宏实际上不是语句,看定义后就知道它们只是定义了一些数据参数,在ROM中占据了一定的长度。
/*
* EXIT(STATUS)
*/
bne t4, OP_EXIT, 8f // OP_EXIT is 0x00000000
nop
move v0, t0 // now v0 is the content of 4 bytes offset from 0xbfc000xx
b .done
nop
接着就运行
bne t4, OP_EXIT, 8f
这句了,在这里做是否初始化寄存器完成的判断,如果没有完成,就会跳到后面8标号处运行,然后经历一系列的设置(后面接着的那片代码)
DELAY(CYCLES)
READ(ADDR)
WRITE(ADDR,VAL) RMW(ADDR,AND,OR)
WAIT(ADDR,MASK,VAL)
后,直到 OP_EXIT 标志出现,才退出这个设置循环。看到前面有一行 EXIT_INIT(0),表示那个参数数据段结束了,它的宏定义如下:
#define EXIT_INIT(status) .word OP_EXIT, (status); .word 0,0
所以在最后一项的数据记录被读取后,总是能退出这个初始化循环的,接着就会跳到.done这个标号里运行。
不过,这段代码到底是要设置什么?由DELAY,READ,WRITE,RMW,WAIT 这些符号所标示的代码段实现其相应的功能没有?我还不清楚。
8
la s0, start
subu s0, ra, s0
and s0, 0xffff0000
这段代码是为了访问数据,因为这段汇编在Rom执行,而编译出来的数据段在0x8002xxxx,为了能够访问数据段的数据,需要进行一个地址的修正,s0这是起到这种修正的目的。
la v0, initmips
jalr v0
nop
从此代码便到内存中间去了,从这开始因为可以读写内存,所以有了栈,故可以用C的代码了,所以以后的程序便是C代码了.
4
接着看下面一段代码
.done:
bal superio_init /* initialize the southbridge config register */
nop
bal initserial /* initialize the output of serial port, after this step */
nop /* pmon can output some infomations from COM port*/
PRINTSTR("\r\nPMON2000 MIPS Initializing. Standby...\r\n")
/* begin to check some config registers on CP0 */
PRINTSTR("ERRORPC=")
mfc0 a0, COP_0_ERROR_PC
bal hexserial
nop
PRINTSTR(" CONFIG=")
mfc0 a0, COP_0_CONFIG
bal hexserial
nop
PRINTSTR("\r\n")
PRINTSTR(" PRID=")
mfc0 a0, COP_0_PRID
bal hexserial
nop
PRINTSTR("\r\n")
=====================
解释:
在这段程序里,主要做了两件大事情,一是初始化南桥芯片VIA686B,一是初始化串口输出。
初始化VIA686B是调用子函数superio_init 实现的。初始化串口是调用子函数initserial实现的。
为了尽快地从串口输出调试信息,所以要先初始化VIA686B芯片,才能输出信息出来。
由于 VIA686B芯片包括所有外面接口的功能,比如串口, PS2,USB,并口,还有软盘等等。
只要能从串口输出字符,就已经是成功的第一步了。
在嵌入式的软件开发中,调试软件是最难的,只能根据芯片的管脚电平,或者串口发些调信息出来。
使用管脚调试,最简单的办法,就是加一个指示灯,这也叫“点灯大法”。
只要串口能输出字符串后,使用串口调试就成为基本的方法了。
后面,输出三个CP0寄存器的值,第一个寄存器是出错信息,第二个寄存器是CP0配置信息,第三个寄存器是CP0处理器的ID信息。
=====================
5
下面一段代码从内存条上的SPD(eeprom)中读取内存参数,并且初始化内存窗口。这段代码放到另一篇文章中专门讲解吧。这里就不多说了。
/*
* Now determine DRAM configuration and size by
* reading the I2C EEROM (SPD) on the DIMMS (DDR)
*/
PRINTSTR("DIMM read\r\n")
/* only one memory slot, slave address is 10100001b */
li a1, 0x0
1:
li a0, 0xa1 /* a0: slave address, a1: reg index to read */
bal i2cread
nop
/* save a1 */
move t1, a1
/* print */
move a0, v0
bal hexserial
nop
PRINTSTR("\r\n")
/* restore a1 */
move a1,t1
addiu a1,a1,1
li v0, 0x20
bleu a1, v0, 1b /* repeat for 32 times */
nop
li msize, 0 /* msize is register s2 */
/* set some parameters for DDR333
rank number and DDR type field will be filled later
to check: fix TCAS?
*/
li sdCfg, 0x341043df /* sdCfg is register s6 */
/* read DIMM memory type (must be DDRAM) */
#if 0
li a0,0xa1
li a1,2
bal i2cread
nop
bne v0,7,.nodimm
nop
PRINTSTR("read memory type\r\n")
#endif
/* read DIMM number of rows */
li a0, 0xa1
li a1, 3
bal i2cread
nop
move a0, v0 // v0 is the return value register
subu v0, 12
move s1, v0 // save for later use
bgtu v0, 2, .nodimm // if v0 > 2 then jump to .nodimm
nop
PRINTSTR("read number of rows\r\n")
2: /* read DIMM number of cols */
li a0, 0xa1
li a1, 4
bal i2cread
nop
subu v0, 8 // v0 saved the return value
bgtu v0, 4, .nodimm
nop
// read and check ddr type, the combination of t1 and v0 represents a ddr type
move t1, s1
bne t1, 0, 10f
nop
bne v0, 2, 20f
nop
li v0, 0
b .ddrtype
nop
20: bne v0, 1, 21f
nop
li v0, 1
b .ddrtype
nop
21: bne v0, 0, 22f
nop
li v0, 2
b .ddrtype
nop
22: bne v0, 3, 33f
nop
li v0, 3
b .ddrtype
nop
10: bne t1, 1, 11f
nop
bne v0, 3, 20f
nop
li v0, 4
b .ddrtype
nop
20: bne v0, 2, 21f
nop
li v0, 5
b .ddrtype
nop
21: bne v0, 1, 22f
nop
li v0, 6
b .ddrtype
nop
22: bne v0, 4, 33f
nop
li v0, 7
b .ddrtype
nop
11: bne t1, 2, 33f
nop
bne v0, 4, 20f
nop
li v0, 8
b .ddrtype
nop
20: bne v0, 3, 21f
nop
li v0, 9
b .ddrtype
nop
21: bne v0, 2, 33f
nop
li v0, 10
b .ddrtype
nop
33: PRINTSTR("DDR type not supported!\r\n");
34: b 34b
nop
.ddrtype:
#bit 25:22 is DDR type field
sll v0, 22
and v0, 0x03c00000
or sdCfg, v0
/* read DIMM memory size per side */
li a0, 0xa1
li a1, 31
bal i2cread
nop
beqz v0,.nodimm
nop
sll tmpsize,v0,22 # multiply by 4M
PRINTSTR("read memory size per side\r\n")
2: /* read DIMM number of blocks-per-ddrram */
li a1,17
bal i2cread
nop
beq v0,2,2f
nop
bne v0,4,.nodimm
nop
PRINTSTR("read blocks per ddrram\r\n")
2: /* read DIMM number of sides (banks) */
li a1,5
bal i2cread
nop
beq v0,1,2f
nop
bne v0,2,.nodimm
nop
sll tmpsize,1 # msize *= 2
or sdCfg, 0x1<<27
PRINTSTR("read number of sides\r\n")
2: /* read DIMM width */
li a1,6
bal i2cread
nop
bleu v0,36,2f
nop
bgtu v0,72,.nodimm
nop
PRINTSTR("read width\r\n")
2: addu msize,tmpsize
b 2f
nop
.nodimm:
move dbg,a0 // dbg is s5
PRINTSTR ("\r\nNo DIMM in slot ")
move a0,dbg
bal hexserial
nop
PRINTSTR("\r\n")
move a0,dbg
#li msize,0x10000000
#li sdCfg,0x3d9043df #~133MHz
li msize,0x20000000
li sdCfg,0x3d5043df #~133MHz
2:
PRINTSTR("DIMM SIZE=")
move a0,msize
bal hexserial
nop
PRINTSTR("\r\n")
li t0, 0xbff00008
sd sdCfg, 0(t0)
nop
nop
/* (uint32_t *)0xbfe00040 = 0x80000000
* means only address below 1G will be sent to CPU
*/
lui t0, 0xbfe0
li t1, 0x80000000
sw t1, 0x40(t0)
nop
#### gx 2006-03-17: mode ####
#li t1,0x20
li t1,0x28
li t0, 0xbff00000
sd t1,0(t0)
nop
li t1,0x0
li t0, 0xbff00000
sd t1,0x30(t0)
nop
##fixed base address reg##
sd zero, 0x10(t0)
nop
lui t1,0x2000
sd t1,0x20(t0)
nop
li t1, 0x10000000
blt msize, t1, 1f
nop
####bigger than 256MB####
sd t1, 0x18(t0)
nop
move a0, msize
subu a0, t1
nop
nop
nop
sd a0, 0x28(t0)
nop
b 2f
1:
nop
nop
sd msize, 0x18(t0)
nop
nop
nop
sd zero, 0x28(t0)
nop
nop
nop
2:
PRINTSTR("sdcfg=");
move a0,sdCfg
bal hexserial
nop
PRINTSTR("\r\n");
PRINTSTR("msize=");
move a0,msize
bal hexserial
nop
PRINTSTR("\r\n")
skipdimm:
li t1,0 # accumulate pcimembasecfg settings
/* set bar0 mask and translation to point to SDRAM */
sub t0,msize,1
not t0
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE0_MASK_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE0_MASK
or t1,t0
li t0,0x00000000
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE0_TRANS_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE0_TRANS
or t1,t0
or t1,BONITO_PCIMEMBASECFG_MEMBASE0_CACHED
/* set bar1 to minimum size to conserve PCI space */
li t0, ~0
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE1_MASK_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE1_MASK
or t1,t0
li t0,0x00000000
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE1_TRANS_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE1_TRANS
or t1,t0
or t1,BONITO_PCIMEMBASECFG_MEMBASE1_CACHED
sw t1,BONITO_PCIMEMBASECFG(bonito)
/* enable configuration cycles now */
lw t0,BONITO_BONPONCFG(bonito)
and t0,~BONITO_BONPONCFG_CONFIG_DIS
sw t0,BONITO_BONPONCFG(bonito)
PRINTSTR("Init SDRAM Done!\r\n");
6
下面这段是缓存配置的代码
/*
* Reset and initialize caches to a known state.
*/
#define IndexStoreTagI 0x08
#define IndexStoreTagD 0x09
#define IndexStoreTagS 0x0b
#define IndexStoreTagT 0x0a
#define FillI 0x14
/*
* caches config register bits.
*/
#define CF_7_SE (1 << 3) /* Secondary cache enable */
#define CF_7_SC (1 << 31) /* Secondary cache not present */
#define CF_7_TE (1 << 12) /* Tertiary cache enable */
#define CF_7_TC (1 << 17) /* Tertiary cache not present */
#define CF_7_TS (3 << 20) /* Tertiary cache size */
#define CF_7_TS_AL 20 /* Shift to align */
#define NOP8 nop;nop;nop;nop;nop;nop;nop;nop
do_caches:
TTYDBG("Sizing caches...\r\n");
mfc0 t3, COP_0_CONFIG /* t3 = original config */
and t3, 0xffffeff0 /* Make sure coherency is OK */
and t3, ~(CF_7_TE|CF_7_SE|CF_7_TC|CF_7_SC) /* disable L2/L3 cache */
mtc0 t3, COP_0_CONFIG
li t2, 4096
srl t1, t3, 9
and t1, 3
sllv s3, t2, t1 /* s3 = I cache size */
#ifdef CONFIG_CACHE_64K_4WAY
sll s3,2
#endif
and t1, t3, 0x20
srl t1, t1, 1
addu s4, t1, 16 /* s4 = I cache line size */
srl t1, t3, 6
and t1, 3
sllv s5, t2, t1 /* s5 = D cache size */
#ifdef CONFIG_CACHE_64K_4WAY
sll s5,2
#endif
and t1, t3, 0x10
addu s6, t1, 16 /* s6 = D cache line size */
TTYDBG("Init caches...\r\n")
li s7, 0 /* no L2 cache */
li s8, 0 /* no L3 cache */
#if 0
mfc0 a0, COP_0_PRID
li a1, 0x6301
bne a0,a1,1f
nop
#endif
TTYDBG("godson2 caches found\r\n")
bal godson2_cache_init
nop
#####xuhua########open cp1
#if 1
mfc0 t0,COP_0_STATUS_REG
and t0,0xdbffffff
or t0,t0,0x24000000
mtc0 t0,COP_0_STATUS_REG
#endif
#################
/* close L2 cache */
li a0, 0xbfe00164
sw zero, 0(a0);
mfc0 a0,COP_0_CONFIG
and a0,a0,~((1<<12) | 3)
or a0,a0,2
mtc0 a0,COP_0_CONFIG
#ifdef DEBUG_LOCORE
TTYDBG("Init caches done, cfg = ")
mfc0 a0, COP_0_CONFIG
bal hexserial
nop
TTYDBG("\r\n\r\n")
#endif
7
下面这段代码是把PMON自身从ROM中拷贝到RAM中去
// copy self code segment
TTYDBG("Copy PMON to execute location...\r\n")
#ifdef DEBUG_LOCORE
TTYDBG(" start = 0x")
la a0, start
bal hexserial
nop
TTYDBG("\r\n s0 = 0x")
move a0, s0
bal hexserial
nop
TTYDBG("\r\n")
#endif
la a0, start
li a1, 0xbfc00000
la a2, _edata
or a0, 0xa0000000
or a2, 0xa0000000
subu t1, a2, a0
srl t1, t1, 2
move t0, a0
move t1, a1
move t2, a2
/* copy text section */
1: and t3,t0,0x0000ffff
bnez t3,2f
nop
move a0,t0
bal hexserial
nop
li a0,'\r'
bal tgt_putchar
nop
2: lw t3, 0(t1)
nop
sw t3, 0(t0)
addu t0, 4
addu t1, 4
bne t2, t0, 1b
nop
PRINTSTR("\ncopy text section done.\r\n")
/* Clear BSS */
la a0, _edata
la a2, _end
2: sw zero, 0(a0)
bne a2, a0, 2b
addu a0, 4
TTYDBG("Copy PMON to execute location done.\r\n")
@@@
下面这段代码从汇编世界跳到C世界中去了。
TTYDBG("sp=");
move a0, sp
bal hexserial
nop
#if 1
mfc0 a0,COP_0_CONFIG
and a0,a0,0xfffffff8
or a0,a0,0x3
mtc0 a0,COP_0_CONFIG
#endif
li a0, 4096*1024
sw a0, CpuTertiaryCacheSize /* Set L3 cache size */
move a0,msize
srl a0,20
/* pass pointer to kseg1 tgt_putchar */
la a1, tgt_putchar
addu a1,a1,s0 // la s0,start
// subu s0,ra,s0 ??? ra is the returning address
// and s0,0xffff0000 ??? now what does s0 mean?
la a2, stringserial
addu a2,a2,s0
la v0, initmips // further ENTRY of PMON
jalr v0
nop
+++++++++++++++++++++++++++++++++++++++++++++++
start.S函数详解
+++++++++++++++++++++++++++++++++++++++++++++++
本文讲解那些在 "start.S 文件详解" 一文中没有讲到的各函数的内容,放在一边讲是为了方便读者与"start.S 文件详解" 一文比对着看,那篇文章实在太长了。
CPU_TLBClear
/*
* Clear the TLB. Normally called from start.S.
*/
#if __mips64
#define MTC0 dmtc0
#else
#define MTC0 mtc0
#endif
LEAF(CPU_TLBClear)
li a3, 0 # First TLB index.
li a2, PG_SIZE_4K // here it is 0x00000000
MTC0 a2, COP_0_TLB_PG_MASK // Pagemask's bits 24~13 are 0, then it represents 4K page
1:
MTC0 zero, COP_0_TLB_HI # Clear entry high.
MTC0 zero, COP_0_TLB_LO0 # Clear entry low0.
MTC0 zero, COP_0_TLB_LO1 # Clear entry low1.
mtc0 a3, COP_0_TLB_INDEX # Set the index.
addiu a3, 1
li a2, 64
nop
nop
tlbwi # Write the TLB at index
bne a3, a2, 1b // do a repeat body, clear all TLB entries, that means it will execute 64 times
nop
jr ra
nop
END(CPU_TLBClear)
CPU_TLBInit
/*
* Set up the TLB. Normally called from start.S.
* All operation is due to the structure of EntryHi, EntryLo0, EntryLo1, so understand them first
*/
LEAF(CPU_TLBInit)
li a3, 0 # First TLB index.
li a2, PG_SIZE_16M // here it is 0x01ffe000, its bits of 24~13 are all 1
MTC0 a2, COP_0_TLB_PG_MASK # All pages are 16Mb.
1:
and a2, a0, PG_SVPN // PG_SVPN is 0xfffff000, a0's initial value is 0xc0000000
MTC0 a2, COP_0_TLB_HI // Set up entry high
move a2, a0
srl a2, a0, PG_SHIFT // PG_SHIFT is 6. shift 6 bits right on a0
and a2, a2, PG_FRAME // PG_FRAME is 0x3fffffc0, the most two bits are 0, because we only need 1G memory mapping
ori a2, PG_IOPAGE // PG_IOPAGE is 0x00000017
MTC0 a2, COP_0_TLB_LO0 # Set up entry low0.
addu a2, (0x01000000 >> PG_SHIFT) // 0x00020000, 128K interval???
MTC0 a2, COP_0_TLB_LO1 # Set up entry low1.
mtc0 a3, COP_0_TLB_INDEX # Set the index.
addiu a3, 1
li a2, 0x02000000 // 32M
subu a1, a2 // a1's initial value is 0x40000000, that is 1G memory
nop
tlbwi # Write the TLB
bgtz a1, 1b // if a1>0 then goto 1b, totally it will execute 32 times
addu a0, a2 // Step address 32Mb.
// the first entry is EntryHi: 0xc0000000, EntryLo0: 0x03000017, EntryLo1: 0x03020017, maybe bug?
jr ra
nop
END(CPU_TLBInit)
stringserial
LEAF(stringserial)
move a2, ra
addu a1, a0, s0 // a0 is the address of a string
lbu a0, 0(a1) // load one byte by one byte
1:
beqz a0, 2f // meet the char '\0', then go back
nop
bal tgt_putchar
addiu a1, 1 // a1 is the pointer to one char in the string
b 1b
lbu a0, 0(a1)
2:
j a2
nop
END(stringserial)
outstring
LEAF(outstring)
move a2, ra
move a1, a0
lbu a0, 0(a1)
1:
beqz a0, 2f
nop
bal tgt_putchar
addiu a1, 1
b 1b
lbu a0, 0(a1)
2:
j a2
nop
END(outstring)
hexserial
LEAF(hexserial)
move a2, ra
move a1, a0
li a3, 7
1:
rol a0, a1, 4
move a1, a0
and a0, 0xf
la v0, hexchar
addu v0, s0
addu v0, a0
bal tgt_putchar
lbu a0, 0(v0)
bnez a3, 1b
addu a3, -1
j a2
nop
END(hexserial)
tgt_putchar
LEAF(tgt_putchar)
la v0, COM1_BASE_ADDR // here it is 0xbfd003f8
1:
lbu v1, NSREG(NS16550_LSR)(v0)
and v1, LSR_TXRDY
beqz v1, 1b
nop
sb a0, NSREG(NS16550_DATA)(v0) // store byte, store the char wanted to print to the virtual address byte, then the serial device can process it correctly
#ifdef HAVE_NB_SERIAL
move v1, v0
la v0, COM3_BASE_ADDR
bne v0, v1, 1b
nop
#endif
j ra
nop
END(tgt_putchar)
initserial
LEAF(initserial)
#ifdef HAVE_NB_SERIAL
la v0, COM3_BASE_ADDR
1:
li v1, FIFO_ENABLE|FIFO_RCV_RST|FIFO_XMT_RST|FIFO_TRIGGER_4
sb v1, NSREG(NS16550_FIFO)(v0)
li v1, CFCR_DLAB
sb v1, NSREG(NS16550_CFCR)(v0)
li v1, NS16550HZ/(16*CONS_BAUD)
sb v1, NSREG(NS16550_DATA)(v0)
srl v1, 8
sb v1, NSREG(NS16550_IER)(v0)
li v1, CFCR_8BITS
sb v1, NSREG(NS16550_CFCR)(v0)
li v1, MCR_DTR|MCR_RTS
sb v1, NSREG(NS16550_MCR)(v0)
li v1, 0x0
sb v1, NSREG(NS16550_IER)(v0)
#endif
la v0, COM1_BASE_ADDR
1:
li v1, FIFO_ENABLE|FIFO_RCV_RST|FIFO_XMT_RST|FIFO_TRIGGER_4
sb v1, NSREG(NS16550_FIFO)(v0)
li v1, CFCR_DLAB
sb v1, NSREG(NS16550_CFCR)(v0)
li v1, NS16550HZ/2/(16*CONS_BAUD)
sb v1, NSREG(NS16550_DATA)(v0)
srl v1, 8
sb v1, NSREG(NS16550_IER)(v0)
li v1, CFCR_8BITS
sb v1, NSREG(NS16550_CFCR)(v0)
li v1, MCR_DTR|MCR_RTS
sb v1, NSREG(NS16550_MCR)(v0)
li v1, 0x0
sb v1, NSREG(NS16550_IER)(v0)
nop
j ra
nop
END(initserial)
godson2_cache_init
LEAF(godson2_cache_init)
####part 2####
cache_detect_2way:
mfc0 t4, CP0_CONFIG
andi t5, t4, 0x0e00
srl t5, t5, 9
andi t6, t4, 0x01c0
srl t6, t6, 6
addiu t6, t6, 11
addiu t5, t5, 11
addiu t4, $0, 1
sllv t6, t4, t6
srl t6,1
sllv t5, t4, t5
srl t5,1
addiu t7, $0, 2
####part 3####
lui a0, 0x8000
addu a1, $0, t5
addu a2, $0, t6
cache_init_d2way:
#a0=0x80000000, a1=icache_size, a2=dcache_size
#a3, v0 and v1 used as local registers
mtc0 $0, CP0_TAGHI
addu v0, $0, a0
addu v1, a0, a2
1: slt a3, v0, v1
beq a3, $0, 1f
nop
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_D, 0x0(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_D, 0x1(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_D, 0x2(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_D, 0x3(v0)
beq $0, $0, 1b
addiu v0, v0, 0x20
#if 1
1:
cache_init_l24way:
mtc0 $0, CP0_TAGHI
addu v0, $0, a0
addu v1, a0, 128*1024
1: slt a3, v0, v1
beq a3, $0, 1f
nop
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_S, 0x0(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_S, 0x1(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_S, 0x2(v0)
mtc0 $0, CP0_TAGLO
cache Index_Store_Tag_S, 0x3(v0)
beq $0, $0, 1b
addiu v0, v0, 0x20
1:
cache_flush_4way:
addu v0, $0, a0
addu v1, a0, 128*1024
1: slt a3, v0, v1
beq a3, $0, 1f
nop
cache Index_Writeback_Inv_S, 0x0(v0)
cache Index_Writeback_Inv_S, 0x1(v0)
cache Index_Writeback_Inv_S, 0x2(v0)
cache Index_Writeback_Inv_S, 0x3(v0)
beq $0, $0, 1b
addiu v0, v0, 0x20
# endif
1:
cache_flush_i2way:
addu v0, $0, a0
addu v1, a0, a1
1: slt a3, v0, v1
beq a3, $0, 1f
nop
cache Index_Invalidate_I, 0x0(v0)
# cache Index_Invalidate_I, 0x1(v0)
# cache Index_Invalidate_I, 0x2(v0)
# cache Index_Invalidate_I, 0x3(v0)
beq $0, $0, 1b
addiu v0, v0, 0x20
1:
cache_flush_d2way:
addu v0, $0, a0
addu v1, a0, a2
1: slt a3, v0, v1
beq a3, $0, 1f
nop
cache Index_Writeback_Inv_D, 0x0(v0)
cache Index_Writeback_Inv_D, 0x1(v0)
cache Index_Writeback_Inv_D, 0x2(v0)
cache Index_Writeback_Inv_D, 0x3(v0)
beq $0, $0, 1b
addiu v0, v0, 0x20
1:
cache_init_finish:
nop
jr ra
nop
cache_init_panic:
TTYDBG("cache init panic\r\n");
1: b 1b
nop
.end godson2_cache_init
superio_init
LEAF(superio_init)
PCICONF_WRITEW(PCI_IDSEL_VIA686B,0,4,7);
/*positive decode*/
PCICONF_ORB(PCI_IDSEL_VIA686B,0,0x81,0x80);
PCICONF_WRITEB(PCI_IDSEL_VIA686B,0,0x83,0x80|0x1| 0x8);
PCICONF_WRITEB(PCI_IDSEL_VIA686B,0,0x85,3);
/* enable RTC/PS2/KBC */
PCICONF_WRITEB(PCI_IDSEL_VIA686B,0,0x5A,7);
SUPERIO_WR(0xe2,E2_S2|E2_S1|E2_EPP|E2_FLOPPY) /*enable serial and floppy */
SUPERIO_WR(0xe3,0x3f0>>2) /*floppy base address*/
SUPERIO_WR(0xe6,0x378>>2) /*parallel port*/
SUPERIO_WR(0xe7,0x3f8>>2) /*set serial port1 base addr 0x3f8*/
SUPERIO_WR(0xe8,0x2f8>>2) /*set serial port2 base addr 0x2f8*/
SUPERIO_WR(0xee,0xc0) /* both ports on high speed*/
PCICONF_WRITEB(PCI_IDSEL_VIA686B,0,0x85,1)
jr ra
nop
END(superio_init)
+++++++++++++++++++++++++++++++++++++++++
PMON 中读取 DDR 内存 SPD 信息的代码
+++++++++++++++++++++++++++++++++++++++++
本文讲述用I2C协议从内存条上的SPD(eeprom)中读取内存参数。
SPD 信息简述
SPD(eeprom)中,定义了很多参数,这里给出一个简单的说明。
第0字节 表示厂商使用的字节数。
第1字节 表示EERPOM存储容量。
第2字节 表示内存类型。
第3字节 表示行地址位数。
第4字节 表示列地址位数。
第5字节 表示排数。
第6字节 表示数据宽度(低字节)。
第7字节 表示数据宽度(高字节)。
第8字节 表示信号电平。
第9字节 表示SDRAM最高时钟频率。
第10字节 表示SDRAM访问时间。
第11字节 表示配置类型。
第12字节 表示刷行率/类型。
第13字节 表示最小SDRAM颗粒数据宽度。
第16字节 表示支持突发传输长度。
第17字节 表示逻辑BANK数。
第18字节 表示CAS延时。
第23字节 表示SDRM时钟。是2的最大指数倍。
第24字节 表示SDRAM访问时间。
第34字节 表示输入数据建立时间。
第35字节 表示输入数据保持时间。
第62字节 表示SPD版本号。
其它的字节,就要参考SPD文档了。后面一大段程序就是实现了读取这些参数,然后根据这些参数来设置龙芯内存的SDRAM寄存器。
PMON 中对内存SPD读取及处理的方法
读取spd
● (offset 3)读取行地址数目
● (offset 4)读取列地址数目
● 根据行列地址数目判断ddrtype
● (offset 31)读取每个片选的容量
– 用该值初始化内存大小tmpsize
● (offset 17)读取芯片bank,一般为4
● (offset 5)读取片选数(相当于module数)
– 按照片选数,计算内存大小tmpsize
– 按照读出的片选数设置sdcfg寄存器
● (offset 6)读取位宽
● 其中sdcfg的初始值是按照ddr333设置的
(注释表明,没有详细验证)
初始化内存控制器
● 经过spd的读取过程我们获得sdcfg配置和
内存大小memsize
● 设置CPU内部sdcfg寄存器(0x1ff00008)
● 按照memsize设置内存窗口
● 1ff0 0000偏移开始的四个寄存器
– 0x10/0x20(mem window base)
– 0x18/0x28(mem window size)
– e.g. 128MB内存
● 0x10=0,0x18=128MB,0x20=512MB,0x28=0
– e.g. 512MB内存
● 0x10=0,0x18=256MB,0x20=512MB,0x28=256MB
– 有很多的nop,调试试验的结果
代码讲解
/*
* Now determine DRAM configuration and size by
* reading the I2C EEROM (SPD) on the DIMMS (DDR)
*/
PRINTSTR("DIMM read\r\n")
/* only one memory slot, slave address is 10100001b */
li a1, 0x0
1:
li a0, 0xa1 /* a0: slave address, a1: reg index to read */
bal i2cread
nop
/* save a1 */
move t1, a1
/* print */
move a0, v0
bal hexserial
nop
PRINTSTR("\r\n")
/* restore a1 */
move a1,t1
addiu a1,a1,1
li v0, 0x20
bleu a1, v0, 1b /* repeat for 32 times */
nop
li msize, 0 /* msize is register s2 */
/* set some parameters for DDR333
rank number and DDR type field will be filled later
to check: fix TCAS?
*/
li sdCfg, 0x341043df /* sdCfg is register s6 */
/* read DIMM memory type (must be DDRAM) */
#if 0
li a0,0xa1
li a1,2
bal i2cread
nop
bne v0,7,.nodimm
nop
PRINTSTR("read memory type\r\n")
#endif
/* read DIMM number of rows */
li a0, 0xa1
li a1, 3
bal i2cread
nop
move a0, v0 // v0 is the return value register
subu v0, 12
move s1, v0 // save for later use
bgtu v0, 2, .nodimm // if v0 > 2 then jump to .nodimm
nop
PRINTSTR("read number of rows\r\n")
2: /* read DIMM number of cols */
li a0, 0xa1
li a1, 4
bal i2cread
nop
subu v0, 8 // v0 saved the return value
bgtu v0, 4, .nodimm
nop
// read and check ddr type, the combination of t1 and v0 represents a ddr type
move t1, s1
bne t1, 0, 10f
nop
bne v0, 2, 20f
nop
li v0, 0
b .ddrtype
nop
20: bne v0, 1, 21f
nop
li v0, 1
b .ddrtype
nop
21: bne v0, 0, 22f
nop
li v0, 2
b .ddrtype
nop
22: bne v0, 3, 33f
nop
li v0, 3
b .ddrtype
nop
10: bne t1, 1, 11f
nop
bne v0, 3, 20f
nop
li v0, 4
b .ddrtype
nop
20: bne v0, 2, 21f
nop
li v0, 5
b .ddrtype
nop
21: bne v0, 1, 22f
nop
li v0, 6
b .ddrtype
nop
22: bne v0, 4, 33f
nop
li v0, 7
b .ddrtype
nop
11: bne t1, 2, 33f
nop
bne v0, 4, 20f
nop
li v0, 8
b .ddrtype
nop
20: bne v0, 3, 21f
nop
li v0, 9
b .ddrtype
nop
21: bne v0, 2, 33f
nop
li v0, 10
b .ddrtype
nop
33: PRINTSTR("DDR type not supported!\r\n");
34: b 34b
nop
.ddrtype:
#bit 25:22 is DDR type field
sll v0, 22
and v0, 0x03c00000
or sdCfg, v0
/* read DIMM memory size per side */
li a0, 0xa1
li a1, 31
bal i2cread
nop
beqz v0,.nodimm
nop
sll tmpsize,v0,22 # multiply by 4M
PRINTSTR("read memory size per side\r\n")
2: /* read DIMM number of blocks-per-ddrram */
li a1,17
bal i2cread
nop
beq v0,2,2f
nop
bne v0,4,.nodimm
nop
PRINTSTR("read blocks per ddrram\r\n")
2: /* read DIMM number of sides (banks) */
li a1,5
bal i2cread
nop
beq v0,1,2f
nop
bne v0,2,.nodimm
nop
sll tmpsize,1 # msize *= 2
or sdCfg, 0x1<<27
PRINTSTR("read number of sides\r\n")
2: /* read DIMM width */
li a1,6
bal i2cread
nop
bleu v0,36,2f
nop
bgtu v0,72,.nodimm
nop
PRINTSTR("read width\r\n")
2: addu msize,tmpsize
b 2f
nop
.nodimm:
move dbg,a0 // dbg is s5
PRINTSTR ("\r\nNo DIMM in slot ")
move a0,dbg
bal hexserial
nop
PRINTSTR("\r\n")
move a0,dbg
#li msize,0x10000000
#li sdCfg,0x3d9043df #~133MHz
li msize,0x20000000
li sdCfg,0x3d5043df #~133MHz
2:
PRINTSTR("DIMM SIZE=")
move a0,msize
bal hexserial
nop
PRINTSTR("\r\n")
li t0, 0xbff00008
sd sdCfg, 0(t0)
nop
nop
/* (uint32_t *)0xbfe00040 = 0x80000000
* means only address below 1G will be sent to CPU
*/
lui t0, 0xbfe0
li t1, 0x80000000
sw t1, 0x40(t0)
nop
#### gx 2006-03-17: mode ####
#li t1,0x20
li t1,0x28
li t0, 0xbff00000
sd t1,0(t0)
nop
li t1,0x0
li t0, 0xbff00000
sd t1,0x30(t0)
nop
##fixed base address reg##
sd zero, 0x10(t0)
nop
lui t1,0x2000
sd t1,0x20(t0)
nop
li t1, 0x10000000
blt msize, t1, 1f
nop
####bigger than 256MB####
sd t1, 0x18(t0)
nop
move a0, msize
subu a0, t1
nop
nop
nop
sd a0, 0x28(t0)
nop
b 2f
1:
nop
nop
sd msize, 0x18(t0)
nop
nop
nop
sd zero, 0x28(t0)
nop
nop
nop
2:
PRINTSTR("sdcfg=");
move a0,sdCfg
bal hexserial
nop
PRINTSTR("\r\n");
PRINTSTR("msize=");
move a0,msize
bal hexserial
nop
PRINTSTR("\r\n")
skipdimm:
li t1,0 # accumulate pcimembasecfg settings
/* set bar0 mask and translation to point to SDRAM */
sub t0,msize,1
not t0
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE0_MASK_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE0_MASK
or t1,t0
li t0,0x00000000
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE0_TRANS_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE0_TRANS
or t1,t0
or t1,BONITO_PCIMEMBASECFG_MEMBASE0_CACHED
/* set bar1 to minimum size to conserve PCI space */
li t0, ~0
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE1_MASK_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE1_MASK
or t1,t0
li t0,0x00000000
srl t0,BONITO_PCIMEMBASECFG_ASHIFT-BONITO_PCIMEMBASECFG_MEMBASE1_TRANS_SHIFT
and t0,BONITO_PCIMEMBASECFG_MEMBASE1_TRANS
or t1,t0
or t1,BONITO_PCIMEMBASECFG_MEMBASE1_CACHED
sw t1,BONITO_PCIMEMBASECFG(bonito)
/* enable configuration cycles now */
lw t0,BONITO_BONPONCFG(bonito)
and t0,~BONITO_BONPONCFG_CONFIG_DIS
sw t0,BONITO_BONPONCFG(bonito)
PRINTSTR("Init SDRAM Done!\r\n");
=====================
解释:
/* only one memory slot, slave address is 10100001b */
li a1, 0x0
1:
li a0, 0xa1 /* a0: slave address, a1: reg index to read */
bal i2cread
nop
上面这段代码,把 0 设置给 a1,然后把 0xa1 设置给 a0,然后就调用 I2C 的子函数来读取数据。a0 和 a1 寄存器是 i2cread 这个函数的两个参数。
i2cread 函数的实现
下面来看 i2cread 函数的内容
/* a0: slave address
a1: reg off
*/
LEAF(i2cread)
/* set device address */
li v0, 0xbfd00000 + SMBUS_HOST_ADDRESS
li a0, 0xa1
sb a0, 0(v0);
/* store register offset */
li v0, 0xbfd00000 + SMBUS_HOST_COMMAND
sb a1, 0(v0);
/* read byte data protocol */
li v0, 0x08
li v1, 0xbfd00000 + SMBUS_HOST_CONTROL
sb v0, 0(v1);
/* make sure SMB host ready to start, important!--zfx */
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
lbu v0, 0(v1)
andi v0,v0, 0x1f
beqz v0,1f
nop
sb v0, 0(v1)
lbu v0, 0(v1) #flush the write
1:
/* start */
li v1, 0xbfd00000 + SMBUS_HOST_CONTROL
lbu v0, 0(v1)
ori v0, v0, 0x40
sb v0, 0(v1);
/* wait */
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
li a1, 0x1000
1:
#if 1
/* delay */
li a0, 0x1000
2:
bnez a0,2b
addiu a0, -1
#endif
addiu a1, -1
beqz a1, 1f
nop
lbu v0, 0(v1)
andi v0, SMBUS_HOST_STATUS_BUSY
bnez v0, 1b #IDEL ?
nop
1:
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
lbu v0, 0(v1)
andi v0,v0, 0x1f
beqz v0,1f
nop
sb v0, 0(v1) #reset
lbu v0, 0(v1) #flush the write
1:
li v1, 0xbfd00000 + SMBUS_HOST_DATA0
lbu v0, 0(v1)
jr ra
nop
END(i2cread)
=====================
解释:
/* set device address */
li v0, 0xbfd00000 + SMBUS_HOST_ADDRESS
li a0, 0xa1
sb a0, 0(v0);
上面代码是输出从设备的地址。
/* store register offset */
li v0, 0xbfd00000 + SMBUS_HOST_COMMAND
sb a1, 0(v0);
上面代码是输出从设备的寄存器偏移量。
/* read byte data protocol */
li v0, 0x08
li v1, 0xbfd00000 + SMBUS_HOST_CONTROL
sb v0, 0(v1);
/* make sure SMB host ready to start, important!--zfx */
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
lbu v0, 0(v1)
andi v0,v0, 0x1f
beqz v0,1f
nop
sb v0, 0(v1)
lbu v0, 0(v1) #flush the write
上面代码是查看数据总线是否准备好数据。
1:
/* start */
li v1, 0xbfd00000 + SMBUS_HOST_CONTROL
lbu v0, 0(v1)
ori v0, v0, 0x40
sb v0, 0(v1);
/* wait */
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
li a1, 0x1000
1:
#if 1
/* delay */
li a0, 0x1000
2:
bnez a0,2b
addiu a0, -1
#endif
addiu a1, -1
beqz a1, 1f
nop
lbu v0, 0(v1)
andi v0, SMBUS_HOST_STATUS_BUSY
bnez v0, 1b #IDEL ?
nop
上面代码是查看总线是否在忙状态。
1:
li v1, 0xbfd00000 + SMBUS_HOST_STATUS
lbu v0, 0(v1)
andi v0,v0, 0x1f
beqz v0,1f
nop
sb v0, 0(v1) #reset
lbu v0, 0(v1) #flush the write
1:
li v1, 0xbfd00000 + SMBUS_HOST_DATA0
lbu v0, 0(v1)
jr ra
nop
上面代码是已经把命令成功发送出去,然后成功地读取回来数据,保存在v0寄存里。
通过上面的子函数,就可以通过I2C总线去读取内存条上的EEPROM参数,以便后面进行内存初始化。
在这里第一次读取是第一个字节。
+++++++++++++++++++++++++++++++++++++++++
end
+++++++++++++++++++++++++++++++++++++++++
[ Last edited by zzz19760225 on 2017-11-2 at 00:21 ]
|
1<词>,2[句],3/段\,4{节},5(章)。 |
|